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Abstract

We use reduced fidelity to characterize quantum phase transitions in the one-
dimensional spin-1/2 antiferromagnetic Heisenberg chain with frustration. For
the ground state and the low-lying excited states, explicit results of the reduced
fidelities between the nearest-neighbor and next-nearest-neighbor spins are
given in both the even-size and odd-size cases. We find the reduced fidelity
is an effective tool in detecting the quantum phase transitions associated with
level crossings for the finite-size systems. Interestingly, the reduced fidelity
between next-nearest-neighbor spins is evidently more sensitive at the quantum
phase transition points than the nearest-neighbor case. Moreover, the reduced
fidelity of the low-lying excited states is a good indicator both for the first-order
and infinite-order quantum phase transitions of the system.

PACS numbers: 03.65.Ud, 03.67.−a, 75.10.Pq

1. Introduction

Fidelity, which describes the overlap between two states, has been recently introduced from
the quantum-information theory to characterize quantum phase transitions (QPTs) [1]. Since
QPTs are induced by the changes of external parameters at zero temperature, the ground-
state (GS) fidelity [2–5], i.e., the overlap of GS corresponding to slightly different external
parameters, becomes a successful tool in measuring QPTs. This has been proved in XY spin
chains and Dicke model [3], XXZ chain[6], Hubbard model [7, 8], frustrated Heisenberg chain
[9], the heteronuclear molecular Bose–Einstein-condensate model [10], Kitaev honeycomb
model [11], extended Harper model [12] and matrix product states [13]. The main advantage
of fidelity as an indicator of QPTs is that it is a purely Hilbert-space geometrical quantity
and does not need a priori knowledge of the order parameter, which is a traditional notation
of QPTs and generally not easy to be found for a given system. However, all the above
works are concentrated on the fidelity of the global system, while the subsystems are indeed
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of more practical use in experiments. Therefore, reduced fidelity (RF) (or named partial
fidelity) is naturally introduced to describe the overlap of the GS for the subsystem under
a global changed parameter, and has been proved to be as effective as the fidelity of global
systems, like the XY model [14, 15], BCS superconductor [16], Lipkin–Meshkov–Glick model
[17, 18], dimerized Heisenberg chain [19] and bilinear–biquadratic model[20]. In addtion,
there is another important quantum-information concept, entanglement, which is studied
extensively in previous works [21–24], and is shown to be effective in detecting QPTs.
However, we emphasize that, the reduced fidelity, which describes the overlap between states,
is more direct in physical motivation and implication.

In our previous work [19], we have investigated the RF for the antiferromagnetic
Heisenberg chain with dimerization, i.e., inhomogeneous nearest-neighbor (NN) spin
coupling. We find that the RF between NN couplings is an effective indicator for the second-
order QPT of the system. On the other hand, the Heisenberg chain with frustration, i.e., next-
nearest-neighbor (NNN) spin coupling, is another interesting quantum many-body system for
the existence of competition between NN and NNN couplings. It well describes the material
structure in some quasi-one-dimensional (quasi-1D) compounds, such as CuGeO3 [25, 26]
and NaV2 O5 [27]. Therefore, it is an intriguing issue to investigate the RF for the QPTs
of such a system [28–32]. There are two important QPTs in this model, a first-order QPT
and an infinite-order QPT. The first-order QPT point is easily manifested by the quantum-
information concepts like GS entanglement [28–30] and operator fidelity susceptibility [31],
while the infinite-order QPT is more convenient to be determined by the information of the
low-lying excited states (ESs) like the first ES fidelity [32]. The explanations will be given
in section 2.1. It is noted that most of the above works are focused on the systems with even
size, since in these cases the results always converge fast to the QPT points. Furthermore,
for the odd-size systems, the GSs are generally degenerate and the energy structure of ESs
becomes rather complex. As yet, there are very few works [31] concerning about the QPTs in
the odd-size systems.

In this work, we will use the RF to study QPTs of the 1D spin-1/2 antiferromagnetic
Heisenberg chain with frustration. It is interesting to find that the RF between NNN spins is
evidently more sensitive at the QPT points than that between NN spins, and the RF for the
low-lying ES is also an effective indicator of QPTs of this system both for even- and odd-size
cases.

This paper is organized as follows. In section 2, we introduce the model, derive a general
expression of RF, and discuss the energy spectra of the system. In section 3, the QPTs of the
system is studied analytically and numerically. Finally, a summary is presented in section 4.

2. Reduced fidelity and energy spectra

2.1. Model

The Hamiltonian for the antiferromagnetic Heisenberg chain with frustration reads [33]

H =
N∑

i=1

(Si · Si+1 + λSi · Si+2), (1)

where Si denotes the ith spin-1/2 operator, λ > 0 is the ratio between NNN and NN couplings.
The periodic boundary condition S1 = SN+1 is assumed.

It is known that there are two important QPT points of this system, i.e., λ1c = 0.5 and
λ2c � 0.241.
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Figure 1. Low-lying energy spectra for N = 6, 8, 10 and N = 7, 9, 11 of the frustrated Heisenberg
chain in the antiferromagnetic case.

(i) At λ1c = 0.5, the system reduces to an exactly solvable model, i.e., Majumdar–
Ghosh model [34, 35]. Its GS is of spin zero, but degenerate, which is a uniformly weighted
superposition of two NN valence bound states (for even and infinite N cases)

|ϕR〉 = [1, 2][3, 4] · · · [N − 1, N],

|ϕL〉 = [N, 1][2, 3] · · · [N − 2, N − 1],
(2)

where [i, j ] = (|0i〉|1j 〉 − |1i〉|0j 〉)/
√

2. The corresponding GS energy per spin is −3/4.
This point is just the GS energy-level crossing induced by the translation symmetry breaking
[36]. Thus it is a first-order QPT point. Using the quantum-information concepts, it is able
to be detected by GS concurrence [28, 29], entanglement entropy [30] and operator fidelity
susceptibility [31], etc.

(ii) At λ2c � 0.241, the system undergoes a Berezinskii–Kosterlitz–Thouless (BKT) type
QPT from spin fluid to dimerized phase [37–39]. This phase transition is driven by the
competition between the NN and NNN interactions. When λ < λ2c, the NNN interaction does
not change the character of the simple antiferromagnetic case λ = 0, whose GS is described
as spin fluid massless spinon excitations. When λ > λ2c, the frustration term is relevant and
the GS flows to the strong-coupling dimerized phase. Furthermore, it is found that λ2c is
accurately the degenerate point of the first-excited singlet and triplet states for even-size and
infinite-size cases [40–43] . As shown in figure 1, the gap between the GS and the low-lying
ESs scales as the system size as 1/N . For λ < λ2c, the energy of the singlet state (with total
spin S = 0) is higher than the triplet state (S = 1). For λ > λ2c, the singlet state becomes
degenerate with the GS as N → ∞, and an energy gap between the triplet state and the two
GSs is formed accompanied by the stabilization of a dimerized phase. Therefore, many works
were done based on this fact and proved it as a reliable method to obtain λ2c [32, 44]. For
example, [32] has proposed the fidelity of the first ES to be an indicator of this λ2c. There
are also studies [45] showing that when the GS is known to be nondegenerate, the QPTs are
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actually caused by the reconstructions of ESs of the Hamiltonian. In this work, we will use
the RF of the lowing-lying ESs to detect this point.

2.2. Reduced fidelity

The GS fidelity is defined as [2–5]

F = |〈�(λ)|�(λ + δ)〉|, (3)

where |�(λ)〉 represents the global GS of the system, and δ is a small change of the system
parameter λ. Here, the GS is a pure state. However, for a subsystem, it becomes a mixed one,
since some of the degrees of freedom of the system is traced out. In this case, it is convenient
to use the definition of mixed-state fidelity [47, 48]

F = tr
√

ρ(λ)1/2ρ(λ + δ)ρ(λ)1/2, (4)

with ρ(λ) the reduced density matrix of the GS. The definitions of (3) and (4) are also
applicable to ESs.

It is noted that the Hamiltonian (1) has the SU(2) symmetry, i.e., [H, Sα] = 0 with S the
total spin and α = x, y, z. This guarantees the reduced density matrix between two arbitrary
spins i and j has the form [46]

ρij = diag(�1, �2), (5)

with

�1 =
(

u+ 0
0 u+

)
, �2 =

(
u− w

w u−

)
, (6)

in the basis {|00〉, |11〉, |01〉, |10〉}, where σz|0〉 = −|0〉 and σz|1〉 = |1〉. The matrix elements
are given by

u± = 1
4 (1 ± cij ), w = 1

2cij , (7)

with cij = 〈σizσjz〉 = tr(ρijσizσjz). This means that the reduced density matrix ρij is
only related to the spin correlator cij . In addition, there is an exchange invariance in the
Hamiltonian, which leads to the facts that, any two terms of the form ci,i+1 equal to each other,
so are the terms ci,i+2. Thus, in this paper, we only consider the reduced density matrices with
the NN and NNN couplings, i.e., ρ12 and ρ13.

It is noted that both �1 and �2 in equation (6) are Hermitian, and can be rewritten in terms
of Pauli operators as �1 = u+I, �2 = u−I + wσx, where I denotes a 2 × 2 identity matrix.
Subsequently, it is found that �i ≡ �i(λ)(i = 1, 2) commutes with �̃i ≡ �i(λ + δ) with δ a
small change of the system parameter λ, i.e., [�i, �̃i] = 0. Thus they can be diagonalized
simultaneously. With the definition in equation (4), we get [19, 20]

F�i
= tr

√
�

1/2
i �̃i�

1/2
i = tr

√
�i�̃i =

∑
j

√
λj λ̃j , (8)

where λj s and λ̃j s are the eigenvalues of �i and �̃i , respectively. This result indicates that if
�i commutes with �̃i , then F�i

is only determined by the eigenvalues of �i and �̃i . In fact, the
RF expression (8) is applicable to arbitrary two Hermitian and semi-positive definite matrices,
which are commuting with each other.

For our model, the RF for the density matrix ρij can be derived explicitly as

Fij = 3
4

√
(1 + cij (λ))(1 + cij (λ + δ)) + 1

4

√
(1 − 3cij (λ))(1 − 3cij (λ + δ)). (9)
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We see that Fij depends only on the spin correlator cij itself. Therefore, the nontrivial behavior
of Fij is totally determined by that of the corresponding spin correlator. To ensure that the
eigenvalues of �1 and �2 are non-negative, it is required that cij ∈ (−1, 1

3

)
, which subsequently

guarantees Fij ∈ [0, 1].
The relation between the RF (9) and QPTs may be understood as follows. The spin

correlator cij contains all the information of the reduced density matrix ρij , as shown in
equations (5)–(7). This indicates that the discontinuity of Fij roots in that of the elements of
ρij . Meanwhile, it is illustrated in [49] that, under some general conditions, the discontinuity
of the elements of the reduced density matrix ρij is the origin of that of the first derivative of
the GS energy (∂λE0), which is another effective measure of first-order QPTs. This means that
the discontinuity of the RF and the first derivative of GS energy have the same origins. Thus
they are equivalent effective in characterizing first-order QPTs, which is similar to the relation
between the global fidelity and first derivative of GS energy [5]. The above analyses are also
available for the low-lying ESs, since ρij and E0 are obtained under the same eigenstate of the
Hamiltonian.

2.3. Energy spectra

The final result (9) suggests that our task is to calculate the spin correlator cij = tr(ρijσizσjz),
where ρij is obtained by tracing out all other spin degrees of freedom except for i and j ,
i.e., ρij = trij (ρ) with ρ the corresponding global density matrix. In the following, we will
concentrate on the RFs for the GS and the low-lying ESs. As we know, for a nondegenerate
pure state |�n〉, the density matrix of the global system can be expressed as ρn = |�n〉〈�n|.
However, when |�n〉 is degenerate, it is a little trouble to obtain the corresponding density
matrix. Thus it is necessary to examine the energy spectra of the Hamiltonian to see the energy
degeneracy first.

In figure 1, we explicitly show the low-lying energy spectra of the frustrated Heisenberg
chain in the antiferromagnetic case for the system sizes N = 6, 8, 10 and N = 7, 9, 11. They
are mainly divided into two types with even and odd sizes, respectively. For even-size system,
the GS is nondegenerate except for the crossing points. However, the first ES for the even-size
system is threefold degenerate when 0 < λ < λ2c (λ2c � 0.241), and is nondegenerate when
λ > λ2c except for the crossing points. It is noted that the first ES crosses with both the GS
at λ1c = 0.5 and the second ES at λ2c � 0.241. Thus it is expected that the RF of the first
ES would indicate both the two QPT points as the parameter λ changes. For the odd-size
system, the GS is fourfold degenerate except for the crossing points, while the degeneracies
of the low-lying ESs become very complex as λ varies. However, it is found excitedly that
there still exists a crossing point at which the second and third ESs cross with each other. As
N increases from 7 to 11, this point changes from λ = 0.281 to λ = 0.254, which approaches
the QPT point λ2c � 0.241. This implies that the RF of the second ES would also exhibit the
QPT point λ2c for the odd-size systems.

The degeneracy properties of the above energy spectra can be explained as follows. For
the even-size system, according to the Lieb–Mattis theorem [51], the GS of the system in the
antiferromagnetic case should be included in the subspace with Sz = 0, which corresponds to
a situation with an equal number of down and up spins. In this subspace, all the spin operators
Sα(α = x, y, z) commute with each other, as well as the Hamiltonian H, thus the GS of the
system is nondegenerate except for energy-level crossings [34, 35]. For the odd-size system,
the lowest energy of the system exists in the subspaces with Sz = ±1/2. These two subspaces
have the same energy spectra due to the Z2 symmetry of the system, i.e., [H,

⊗
i σix] = 0.

And in each of these subspaces, the spin operators Sα do not commute with each other, which

5



J. Phys. A: Math. Theor. 42 (2009) 065304 H-N Xiong et al

can also induce degeneracy of the GS. Therefore, the GS for the odd-size system is at least
fourfold degenerate.

In addition, the real QPT points only exist in the thermodynamic limit, i.e., N → ∞,
which can be treated as an even number. This is why the energy-level crossings of the even-size
systems converge more quickly than the odd-size systems to the real QPTs as N increases. As
pointed in [34, 35] that for the odd-size system, as N → ∞, the energy per spin only differs
by terms of O(1/N) compared to the even-size system.

One approach to overcome the above subtle problem induced by the degeneracy is to
assume the mixed state as an equal mixture of the degenerate states [31]

ρn = 1

D

D∑
d=1

|�nd〉〈�nd |, (10)

with D the degeneracy of the energy En and |�nd〉 the dth degenerate eigenstate of the system.
This assumption is not unreasonable when we consider a general mixed state in the thermal
equilibrium ρ = exp(−H/T )/Z with Z = tr{exp(−H/T )} the partition function. If ρn is
degenerate, each of its degenerate states has the same probability Pnd = exp(−En/T )/Z, i.e.,
the degenerate state |�nd〉 has an equal mixture weight in the mixed state ρn. In the following,
we will adopt this approach to calculate the RF of the system.

3. Quantum phase transitions

3.1. Analytical results for N = 6 case

For the case that the total spins N = 6, the GS energy can be analytically obtained in the
invariant subspace with Sz = 0. With the help of the translation symmetry of the system (see
[52] ), the GS energy is given by [53]

E0 =
{− 3

2 (1 + λ), λ � 0.5,

− 1
2 (2 +

√
13 − 18λ + 9λ2), λ � 0.5,

(11)

with the corresponding GS

|�0〉 =

⎧⎪⎪⎨⎪⎪⎩
1√
2

(∣∣t+
1

〉 − ∣∣t+
2

〉)
, λ � 0.5,

1√
α2 + β2 + 2

(∣∣t−1 〉 − ∣∣t−2 〉
+ α|t3〉 + β|t4〉

)
, λ � 0.5,

(12)

where ∣∣t±1 〉 =
5∑

n=0

(±1)nT n|110100〉, ∣∣t±2 〉 =
5∑

n=0

(±1)nT n|001011〉,

|t3〉 =
5∑

n=0

(−1)nT n|000111〉, |t4〉 =
1∑

n=0

(−1)nT n|010101〉,

with

α = 1 − 2λ

3 − λ +
√

13 − 18λ + 9λ2
, β = − 1√

3
(α + 2),

and T is the translation operator, i.e., T |0〉i = |0〉i+1 and T |1〉i = |1〉i+1. One can easily check
that the GSs for λ � 0.5 and λ � 0.5 are orthogonal to each other. Hence, for the global
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Figure 2. Reduced fidelities F12 (left) and F13 (right) for the ground state versus λ for N = 6, 8, 10
with δ = 10−3.

system, the GS fidelity on both sides of λ = 0.5 equals to unity, and at the crossing point it
drops to zero, see more in [32]. However, for the subsystem, the reduced density matrix only
contains partial information of the global one. Thus, the orthogonality of the states on both
sides of the crossing point is destroyed and the RF only drops to a finite value.

Then the GS spin correlators of the reduced density matrices ρ12 and ρ13 can be derived
from equation (12) as

c12 =

⎧⎪⎪⎨⎪⎪⎩
−13+9λ−2

√
13−18λ+9λ2

9
√

13−18λ+9λ2 , λ < 0.5,

− 7
15 , λ = 0.5,

− 1
3 , λ > 0.5,

c13 =

⎧⎪⎪⎨⎪⎪⎩
1−λ√

13−18λ+9λ2 , λ < 0.5,

− 1
15 , λ = 0.5,

− 1
3 , λ > 0.5.

(13)

The above results at the point λ = 0.5 is obtained by using the approach shown in
equation (10). Then substitute equation (13) into equation (9), we obtain the final expressions
of the fidelities F12 and F13. Since the spin correlators c12 and c13 are discontinuous at λ = 0.5,
so do the fidelities F12 and F13, as shown in figure 2. In addition, equation (13) shows that
when λ → (0.5)−, c12 → −3/5 and c13 → 1/5, and when λ → (0.5)+, c12, c13 → 1/3. That
is, the difference between the left limit and the right limit of c13 is greater than that of c12.
It means the spin correlator is more sensitive at the QPT point for long-range spin coupling.
This leads to the result that F13 is more singular than F12 in the vicinity of QPT points, which
is compared precisely in figure 2.

3.2. Numerical results for N = 6, 8, 10

In general, it is not an easy work to get the analytical results for N > 6, thus we have to appeal
to the numerical method, i.e., exact diagonalization. In the following, the results are shown in
the even- and odd-size systems, respectively.
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Figure 3. Reduced fidelities F13 for the first-excited state around two different QPT points, i.e.,
λ2c = 0.241 (left) and λ1c = 0.5 (right), versus λ for N = 6, 8, 10 with δ = 10−3.

In figure 2, we plot the RFs F12 and F13 for the GS versus the parameter λ for different
system sizes N = 6, 8, 10. First, we see that both F12 and F13 become discontinuous at the
first-order QPT point λ1c = 0.5. As the system size increases, the discontinuous behavior
around λ1c = 0.5 becomes more and more weak. It may be explained as follows. The relation
between RF (FR) and global fidelity (FG) satisfies FR � FG [54]. For the QPTs associated
with energy-level crossing, the discontinuity of global fidelity at the QPT points results from
the orthogonality of the states on the two sides of the point. At this point, there is a sudden drop
of FG from 1 to 0. Then for a small subsystem, the orthogonality may be destroyed. As the
system size increases, it becomes more and more weak for the subsystem to reflect the global
information of the system. In the thermodynamic limit, the orthogonality may be destroyed
completely, and there is almost no drop of the RF at the QPT points. In this case, FR → 1 at
the QPT points, and it may not effectively exhibit the QPTs. In contrast, the previous works
[15, 17–20] show that, for the QPTs connected to avoided level crossings, the information of
the subsystem may still reflect the dramatic change of the global structure. With the increasing
of N, the RF becomes more and more singular around the QPT points. Moreover, we found
that [18] the reduced fidelity susceptibility takes on a similar scaling behavior as the global
one. The distinctness of the RF in characterizing these two types of QPTs might be very
interesting, and further deep discussion is needed. In conclusion, for our system, the RF can
only reflect the nontrivial behavior of the finite-size systems at the QPT points. However, this
seems enough for usual calculation requirement.

Then comparing the two RFs for a given system size, we find that F13 is obviously
more sensitive than F12 around the QPT point. This may be because the subsystem with
long-range spin coupling contains more information of the whole system, as analyzed in
section 3.1. Thus in the following, our calculations are concentrated on the RF between the
NNN spins.

As it is illustrated in section 2.1 that there is another QPT point at about λ2c � 0.241,
which corresponds to the first and second-excited energy-level crossing for the even-size
system. In [32], they have used the fidelity of the first ES as an indicator of this point. Here
we would like to apply the RF approach to detect it, which is shown in the left-hand figure of
figure 3. It is seen that the discontinuous point of F13 approaches 0.241 with the system size
increasing, even though the nontrivial behavior becomes weaker. This again proves that the
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Figure 4. Reduced fidelities F13 for the ground state (left) and the second-excited state (right)
versus λ for N = 7, 9, 11 with δ = 10−3.

fidelity of the first ES might be a good indicator of the BKT PQTs, no matter it is for the global
or reduced system. Meanwhile, as shown in the right-hand figure of figure 3, the fidelity of
the first ES can also be used to detect the first-order QPT point λ1c. In this sense, the fidelity
of first ES is an effective indicator for both the first-order and the BKT QPTs.

3.3. Numerical results for N = 7, 9, 11

The different energy structures between the odd-size and even-size systems result in the
difference between the singular behavior of the respective RFs. In figure 4, the RFs F13 for
the GS and the second ES versus the parameter λ are displayed. As it is expected that the
RF for the GS can also exhibit the nontrivial behavior around λ1c = 0.5. With the increasing
system size, the discontinuous point of F13 approaches λ1c quickly. Moreover, compared
to F13 for the GS of the even-size system as shown in the right-hand figure of figure 2, the
discontinuous behavior of RF in the odd-size system disappears a little slower. This means
for the odd-size system, the information of the global system stored in the subsystem losses
slower as the system size increases. From the right-hand figure of figure 4, we see that the
RF F13 for the second ES also well reflects the nontrivial behavior of the finite-size system
around λ2c � 0.241. This further testifies the fact that the fidelity of the low-lying ESs is a
good indicator of the QPTs of the system.

4. Conclusion

In conclusion, in terms of RF, we have studied the nontrivial behavior of the 1D spin-1/2
antiferromagnetic Heisenberg chain with frustration around the QPT points of the system. It
is shown that the RF of this system is totally determined by the corresponding spin correlator.
We examine the energy structure for the finite-size systems, and find there are some differences
between the energy structures with even and odd sizes, which leads to the different behavior
of RFs of the two kinds of systems. We calculate the RFs between NN and NNN spin pairs
both for the GS and the low-lying ESs in the finite-size systems. We find the RF between
NNN spins is more sensitive at the QPT points than the NN case, and the RF of the low-lying
ES is also a good indicator for QPTs of the system.
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